の形の無限級数である。ここで an は n 番目の項の係数を表し、c は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において c(級数の中心 (center))は 0 である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形
ノイマン級数
{\displaystyle u_{n}:=\sum _{i=0}^{n}A^{i}v} で定義される un が逐次近似解となる。ノイマン級数は、一定の条件が満たされば、n → ∞ で逐次近似解 un が真の解となり、 u = ( I − A ) − 1 v = v + A v + A 2 v + ⋯
交項級数
数学、とくに解析学における交項級数(こうこうきゅうすう)または交代級数(こうたいきゅうすう、英: alternating series)とは項の正負が交互に入れ替わる無限級数 a 0 − a 1 + a 2 − a 3 + ⋯ = ∑ n = 0 ∞ ( − 1 ) n a n ( for ∀ n
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented