本節では、そうしたプラスアルファの性質のうち代表的なものを紹介する。 分離公理とは、位相空間 X 上の2つの対象(点や閉集合)を開集合により「分離」(separate)する事を示す一連の公理、もしくはそこから派生した公理である。 代表的な分離公理としてハウスドルフの分離公理があり、これは以下のような公理であり、前述のようにこれは有向点族の収束の一意性と同値である。
Words related
位相空間論
ウィキブックスに位相空間論関連の解説書・教科書があります。 位相空間論(いそうくうかんろん)、もしくは一般位相空間論(いっぱんいそうくうかんろん英: general topology、point-set topology)とは、位相空間の性質やその上に定義される構造を研究対象とする数学の分野である。 一般位相空間
となることである。 x を位相空間とするとき、以下は同値。 X はネーター的(すなわち閉部分集合について降鎖条件を満たす)。 X の閉部分集合の空でない任意の族は包含関係に対して極小元をもつ。 X は開部分集合について昇鎖条件を満たす。 X の開部分集合の空でない任意の族は包含関係に対して極大元をもつ。 X の任意の部分集合はコンパクト。
数学において集合 S の内部(ないぶ、英語: interior)あるいは開核(かいかく、英語: open kernel)は、直観的には S の「縁にある点を除く」 S の点全てからなる。S の内部に属する点は S の内点(ないてん、interior point)であるという。 また、集合の外部(がいぶ、英語: