を左アルティン的または右アルティン的と言うことができる。 左右両側の加群の構造をもつ加群は珍しいことではない。例えば R 自身は左かつ右 R-加群としての構造をもつ。実はこれは両側加群の例であり、別の環 S によってアーベル群 M を左 R 右 S 両側加群にできるかもしれない。実際、任意の右加群 M は自動的に整数環
(\forall a\in A)} となるものをいう。M とその部分加群 A が与えられたとき、商 G-加群あるいは G-商加群または剰余 G-加群あるいは G-剰余加群 (G-quotient module) M/A が、作用を考えない抽象群としての剰余群 M/A に G の作用を g ⋅ ( m + A )
平坦加群
の平坦分解という。自由分解や射影分解は平坦分解である。すべての i > n に対し Fi = 0 であるような平坦分解を長さ n の平坦分解という。そのような n が存在する場合その最小値を M の平坦次元といい、存在しない場合は平坦次元は ∞ という。平坦次元は fd(M) と書かれる。平坦次元は射影次元を超えない。左
剰余加群
抽象代数学において、加群と部分加群が与えられると、それらの剰余加群、商加群 (quotient module) を構成することができる。この構成は、以下で書かれるが、整数を整数 n を法として環を得る方法の類似である。合同式を見よ。剰余群や剰余環に用いられるのと同じ構成である。 環 R 上の加群 A と A
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented