くぐる線が入ってくる方から交叉点を見てのものとして、成分は以下の表のように与えられる。 領域が交叉点をくぐる前の左側にあるとき: −t 領域が交叉点をくぐる前の右側にあるとき: 1 領域が交叉点をくぐった後の左側にあるとき: t 領域が交叉点をくぐった後の右側にあるとき: −1
ルジャンドル多項式
ルジャンドル多項式(ルジャンドルたこうしき、英: Legendre polynomial)とは、ルジャンドルの微分方程式を満たすルジャンドル関数のうち次数が非負整数のものを言う。直交多項式の一種である。 解析学においてルジャンドルの微分方程式 d d x [ ( 1 − x 2 ) d d x f (
項式系とは異なり、ベルヌーイ多項式列は、単位区間における x 軸との交点の個数が多項式の次数が増えるにともない増えないという点に注目すべきである。ベルヌーイ多項式を適切に定数倍し次数を大きくした極限では、正弦・余弦関数に近づく。 また、この記事では、オイラー多項式、ベルヌーイ数、オイラー数についても解説する。
ローラン多項式
は、ローラン多項式環と呼ばれる環を成す。通常の多項式と異なり、ローラン多項式は次数がマイナスの項を持つことに注意する。一変数ローラン多項式の構成を再帰的に繰り返すことにより、多変数ローラン多項式も定義される。ローラン多項式は、多変数複素函数論において特に重要である。 X を不定元(形式的な変数)として、体
多項式環
によって明示的に与えられる。上の式は一方の多項式に零を係数とするダミーの項を加えて延長し、両方の多項式に形式的に現れる冪の集合を同じものにする。下の式では右辺の内側の和は 0 ≤ i ≤ m および 0 ≤ j ≤ n の範囲でのみ添字を動かす。和の範囲を明示しない形で加法と乗法の式を書けば、 ( ∑ i a
エルミート多項式
{d}{dx}}+2n\right)H_{n}(x)=0} を満たす多項式 H n ( x ) {\displaystyle H_{n}(x)} のことを言う。 またこの微分方程式はスツルム=リウヴィル型微分方程式の一つである。 エルミート多項式は重み関数(英語版)を e − x 2 {\displaystyle
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented