初等解析学における最大値・最小値の定理または最大値の定理(さいだいちのていり、英: extreme value theorem; 極値定理)は、実数値函数 f が有界閉区間 [a,b] 上で連続ならば f は最大値および最小値にそれぞれ少なくとも一点で到達することを述べるものである。式で書けば、適当な実数
中間値の定理(ちゅうかんちのていり、英: intermediate value theorem)とは、実数の区間の連結性に関する以下のような存在型の定理である。 中間値の定理 ― 実数直線 R の閉区間 I = [a, b] 上で定義される連続な実数値関数 f が f(a) < f(b) を満たすとき、閉区間
閉値域の定理
数学のバナッハ空間に関する定理である閉値域の定理(へいちいきのていり、英: closed range theorem)とは、稠密に定義された閉作用素が閉の値域を持つための必要十分条件を与える定理である。ステファン・バナフの1932年の論文 Théorie des opérations linéaires
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented