f\circ k} は K から Y への零射である; 射 k′: K′ → X であって f ∘ k′ が零射であるものが任意に与えられると,一意的な射 u: K′ → K が存在して,k ∘ u = k' と射を分解できる。 多くの具体的な(英語版)文脈において,射 k よりも対象 K を「核」と呼んでいることに注意。それらの状況では,K
射 (圏論)
射は双射だが、双射は必ずしも同型射ではないことである。例えば、可換環の圏において包含射 Z → Q は双射だが同型射ではない。しかし、全射かつ分裂単射であるような、もしくは単射かつ分裂全射であるような任意の射は同型射でなければならない。集合の圏 Set のように、任意の双射が同型射であるような圏は、均衡圏
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented