P) のことを確率空間と呼ぶ。さらに、集合 S を標本空間、S の元を標本あるいは標本点、完全加法族 E の元を事象あるいは確率事象と呼ぶ。また、E の元としての S を全事象という。 事象 E に対し、P の E における値 P(E) を、事象 E の確率という。つまり、E は確率が定義できることがら全体である。
運動量空間(うんどうりょうくうかん、英: momentum space)は、系が持ちうる全ての運動量ベクトル p の集合である。 粒子の運動量ベクトルは、粒子の運動に対応し、[質量][長さ][時間]−1の次元を持つ。 数学的には、位置と運動量
商線型空間
y となるのは x − y ∈ N であるとき と定める。つまり、x が y と関係を持つのは x に N の適当な元を加えて y にすることができるときである。この定義から、N の任意の元は零ベクトルと同値となり省くことができる。言い換えれば、N に属するすべてのベクトルが零ベクトルの属する同値類に写されるということである。