複素数の共役をとる複素関数 ・ : C → C ; z ↦ z は環同型である。すなわち次が成り立つ。 z + w = z + w zw = z w 複素共役は実数を変えない: z が実数 ⇔ z = z 逆に、C 上の環準同型写像で、実数を変えないものは、恒等写像か複素共役変換に限られる。 複素共役変換は、C
数学におけるラプラス作用素(ラプラスさようそ、英: Laplace operator)あるいはラプラシアン(英: Laplacian)は、ユークリッド空間上の函数の勾配の発散として与えられる微分作用素である。記号では ∇·∇, ∇2, あるいは ∆ で表されるのが普通である。函数 f の点 p におけるラプラシアン
エルミート作用素
h\eta \rangle } を満たす場合、作用素 h は内積 ⟨•, •⟩ に関するエルミート作用素と呼ばれる。 無限次元ヒルベルト空間 H の稠密な部分空間 D 上で定義された線型作用素 h が ξ, η ∈ D について ⟨ h ξ , η ⟩ = ⟨ ξ , h η ⟩ {\displaystyle
数学の一分野、函数解析学におけるユニタリ作用素(ユニタリさようそ、英: unitary operator)は、ヒルベルト空間上の自己同型写像、すなわち構造(今の場合は、作用する対象となる空間の線型空間の構造、内積構造およびそこから定まる位相構造)を保つ全単射である。与えられたヒルベルト空間 H からそれ自身へのユニタリ作用素全体の成す集合は群を成し、H
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented