二次関数(にじかんすう、英: quadratic function)とは、次数が2の多項式によって表される関数のことである。 二次関数とは f ( x ) = a x 2 + b x + c ( a ≠ 0 ) {\displaystyle f(x)=ax^{2}+bx+c\quad (a\neq
Words related
三次関数
はただ一つの変曲点 (xW, f(xW)) を持つ。この変曲点は x W = − b 3 a {\displaystyle x_{W}=-{\frac {b}{3a}}} で与えられ、これは二階導関数 f"(x) = 6ax + 2b の唯一の零点である。 三次函数 f のグラフは、変曲点に関して点対称である。
一次関数
軸に平行な傾き 0 の直線は、定数関数に対応しているのであり、一次関数 y = ax + b の定義に a ≠ 0 を仮定するならば、これも一次関数では表せないことになる。 一次関数の傾きは通る二点が分かれば一意的に決定できるので、一次関数はそれが通る二点が決まればただひとつに決まる。一次関数
二重指数関数
function)とは、指数関数の肩に指数関数を持つ関数である。一般形は f ( x ) = a b x = a ( b x ) {\displaystyle f(x)=a^{b^{x}}=a^{(b^{x})}} 。 指数関数と同様に、二重指数関数型積分公式など、応用上はネイピア数を底に取ったものがよく使われる。 指数の底が
二つの変数 x・y の間に, ある対応関係があって, x の値が定まるとそれに対応して y の値が従属的に定まる時の対応関係。 また, y の x に対する称。 この時 x は単に変数または独立変数と呼ばれる。 y が x の関数であることを y=f(x)などと表す。 ふつう関数といえば, x の値に対して y の値が一つ定まるもの, すなわち一価関数をさす。 従属変数。