数学の解析学の分野におけるフーリエ積分作用素(フーリエせきぶんさようそ、英: Fourier integral operator)は、偏微分方程式の理論において用いられるある重要な作用素である。フーリエ積分作用素の類には、微分作用素や古典的な積分作用素が、特別な場合として含まれる。 フーリエ積分作用素 T は次のように与えられる:
を可測空間 (X, Σ) 上の測度とすると、B が μ に関するラドン–ニコディム性を持つとは、(X, Σ) 上の B に値をとる任意の有界変動かつ μ-絶対連続な可算加法的ベクトル測度 γ に対して、μ-可積分函数 g: X → B で γ ( E ) = ∫ E g d μ {\displaystyle
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented