数学におけるディラック測度(ディラックそくど、英: Dirac measure)は、適当な集合 X(に X の部分集合からなる任意のσ-代数を入れたもの)上で、点 x ∈ X に対して、定義される測度 δx であって、任意の(可測)部分集合 A ⊆ X に対して δ x ( A ) = 1 A ( x
ボレル測度
λ {\displaystyle \lambda } がボレル測度 μ {\displaystyle \mu } の拡張であるとは、すべてのボレル可測集合 E がルベーグ可測であり、さらにその集合上ではボレル測度とルベーグ測度が一致する(すなわち、 λ ( E ) = μ ( E )
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented