を左アルティン的または右アルティン的と言うことができる。 左右両側の加群の構造をもつ加群は珍しいことではない。例えば R 自身は左かつ右 R-加群としての構造をもつ。実はこれは両側加群の例であり、別の環 S によってアーベル群 M を左 R 右 S 両側加群にできるかもしれない。実際、任意の右加群 M は自動的に整数環
群上の加群
(\forall a\in A)} となるものをいう。M とその部分加群 A が与えられたとき、商 G-加群あるいは G-商加群または剰余 G-加群あるいは G-剰余加群 (G-quotient module) M/A が、作用を考えない抽象群としての剰余群 M/A に G の作用を g ⋅ ( m + A )
剰余加群
抽象代数学において、加群と部分加群が与えられると、それらの剰余加群、商加群 (quotient module) を構成することができる。この構成は、以下で書かれるが、整数を整数 n を法として環を得る方法の類似である。合同式を見よ。剰余群や剰余環に用いられるのと同じ構成である。 環 R 上の加群 A と A
射影加群
\operatorname {Hom} (P,K)\to 0} が完全となる加群 P のことを射影加群と呼ぶ。 R を単位元をもつ環とし、以下では加群はすべて左 R 加群、射はすべて左 R 加群の準同型を指すことにする。 加群 P が射影加群である、あるいは射影的とは次の同値な条件のいずれかが成り立つことをいう。 関手
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented