について、(定義より公比は 0 でないため)公比 r は任意の n 番目の項とその次の項の比 r = an+1/an から得られる(特に r = 1 の場合は公差が 0 の等差数列でもある)。等比数列の各項は初項 a と公比 r を用いて具体的に以下のように表せる。 a , a r , a r 2 , … , a
等差数列
common difference)という。 例えば、5, 7, 9, … は初項 5, 公差 2 の等差数列である。同様に、1, 7, 13, … は公差 6 の等差数列である。 等差数列の初項を a0 とし、その公差を d とすれば、第n 項 an は a n = a 0 + n d {\displaystyle
指数 (初等整数論)
mod n を n を法とする原始根(げんしこん、primitive root modulo n)と呼ぶ。すなわち n を法とする原始根とは、n を法とする既約剰余類全体が乗法に関して成す群 (Z / n Z)× が巡回群であるときの、その生成元のことである。 原始根が存在するのは n が 2, 4