初等幾何学における凸多面体の内接球面(ないせつきゅうめん、英: inscribed sphere, insphere; 内球面)は、その多面体に含まれる球面で、その多面体の各面に接するものを言う。これはその多面体の内部に全く含まれる最大の球面であり、またその多面体の双対多面体の外接球面の双対である。 多面体 P の内接球面の半径を、P
接触平面
空間曲線の接触平面(せっしょくへいめん、英: osculating plane)とは、その曲線が局所的に乗っている平面である。 正確には、曲線上の点 P における接ベクトル T と主法線ベクトル N によって定義される平面を、P における接触平面という。このとき、従法線ベクトル B は接触平面の法線となる。