数学における稠密関係(ちゅうみつかんけい、英: dense relation)とは、集合 X 上の二項関係 R であって、X の R-関係にある任意の二元 x, y に対し、X の元 z で x とも y とも R-関係にあるようなものが存在するものをいう。 記号で書けば、 ∀ x ∀ y
稠密部分加群
には入らない。 極大右商環 (maximal right ring of quotients) は R の稠密右イデアルと関連して2つの方法で記述することができる。 1つの方法は、Ẽ(R) はある自己準同型環と同型な加群であることが証明され、その環構造からこの同型によって Ẽ(R) に環構造、極大右商環の構造が入る
稠密に定義された作用素
{D} u)(x)=u'(x)\,} としたとき、これは C0([0, 1]; R) からそれ自身への稠密に定義された作用素で、その定義域は稠密な部分空間 C1([0, 1]; R) である。そのような作用素 D は非有界作用素の例であることにも注意されたい。実際 u n ( x ) = e − n x
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented