数学、特に代数トポロジーにおいて、被覆写像(covering map)あるいは被覆射影(covering projection)とは、位相空間 C から X への連続全射 p のうち、 X の各点が p により「均一に被覆される」開近傍をもつものをいう。厳密な定義は追って与える。このとき C を被覆空間(covering
頂点被覆
グラフ G の頂点被覆とは頂点の集合 C であり、G の各辺は C 内の少なくとも1つの頂点と接合する。このとき集合 C は G の辺を「被覆 (cover)」すると言う。次の図は2つのグラフの頂点被覆の例を表したものである(集合 C は赤で示されている)。 最小頂点被覆 (minimum
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented