複素数型(ふくそすうがた、英: complex data type)とは、いくつかのプログラミング言語において標準で用意されているデータ型の1つで、複素数の表現および演算を取り扱うものである。コンピュータが(厳密には)実数を扱えるわけではないので、複素数も同様に、実際は浮動小数点型のタプルである。
複素解析
孤立した特異点である。 孤立特異点は、可除特異点、極 、真性特異点に分類される。除去可能な特異点とは、その点における値を適当に取り直すことにより、複素函数をその近傍で解析的にすることができるときに言う。極とは、複素函数 f(z) の特異点 z = a であって、(z −
複素共役
複素数の共役をとる複素関数 ・ : C → C ; z ↦ z は環同型である。すなわち次が成り立つ。 z + w = z + w zw = z w 複素共役は実数を変えない: z が実数 ⇔ z = z 逆に、C 上の環準同型写像で、実数を変えないものは、恒等写像か複素共役変換に限られる。 複素共役変換は、C
Angie Ymnk commented