{\text{prime}}\}} によって得られる数論的関数について述べる。 互いに素である正整数 m と n に対して、 a ( m n ) = a ( m ) + a ( n ) {\displaystyle a(mn)=a(m)+a(n)} が成立するとき、加法的関数(additive function)という。
乗法的関数
数論における乗法的関数(じょうほうてきかんすう、英: multiplicative function)とは、正の整数 n の数論的関数 f(n) であって、f(1) = 1 であり、a と b が互いに素であるならば常に f(ab) = f(a) f(b) が成り立つことである。さらに、f(n) が、任意のa
加法的関数
任意の加法的関数 f(n) を用いて、乗法的関数 g(n), すなわち、互いに素な a と b に対して g(ab) = g(a) × g(b) を満たすような関数を作ることは簡単である。例えば、g(n) = 2f(n) とおけばよい。 ^ 可算和と可換であることを意味するσ加法性も「完全加法性」(completely