およびその任意の線型部分空間(自明空間 {0} も含む)は、定義より凸錐である。その他の例として、V の任意のベクトル v とその正の定数倍からなる集合や、Rn の正の象限(すべての成分が正であるベクトルの集合)などが挙げられる。 より一般の例として、正のスカラー λ と、V のある凸部分集合 X の元 x に対するベクトル λx
凸包
数学における凸包(とつほう、英: convex hull)または凸包絡(とつほうらく、英: convex envelope)は、与えられた集合を含む最小の凸集合である。例えば X がユークリッド平面内の有界な点集合のとき、その凸包は直観的には X を輪ゴムで囲んだときに輪ゴムが作る図形として視認することができる。
Angie Ymnk commented