二進対数 (にしんたいすう、英: binary logarithm)とは、2を底とする対数 log2 x のことである。これは、指数関数 x → 2x の逆関数でもある。 二進対数は二進法と密接に関係しているため、計算機科学や情報理論でしばしば使われる。この文脈において、二進対数は「lg
対数平均
{d} \!t \over (t+x)\,(t+y)}} 2種類の由来に応じて対数平均の一般化にも2つの方法があり、それぞれ異なる結果を与える。 対数の n 階導関数についての差商に対する平均値の定理を考慮することにより、対数平均を n+1 変数に一般化できる。結果、 M MV ( x 0 , … , x
実解析において実数の自然対数(しぜんたいすう、英: natural logarithm)は、超越数であるネイピア数 e (≈ 2.718281828459) を底とする対数を言う。x の自然対数を ln x や、より一般に loge x あるいは単に(底を省略して)log x などと書く。 通常の函数の
Angie Ymnk commented