数学において、対数積分(たいすうせきぶん、英: logarithmic integral function)li(x) とは、全ての正の実数 x ≠ 1 において次の自然対数 ln を含む定積分によって定義される特殊関数である。 li ( x ) = ∫ 0 x d t ln t {\displaystyle
{v'}{v}}\right).} このテクニックは f がたくさんの数の因子の積であるときに非常に有用である。このテクニックによって f′ の計算が各因子の対数導関数を計算し、和を取り、f を掛けることによってできるようになる。 対数導関数のアイデアは一階の微分方程式の積分因子手法と密接に関係している。作用素の言葉では、 D
部分対象
u ≡ v ⇔ u ≤ v かつ v ≤ u は余域を A とする単射上の同値関係であり,これらの単射の対応する同値類は A の部分対象 (subobject) である.2つの単射が A の同じ部分対象を表すとき,それらの始域は同型である.A を余域とする単射の集まりに関係 ≤ をいれたものは前順序をなすが,部分対象の定義は
対数微分法
微分積分学において、対数微分法 (logarithmic differentiation) あるいは対数をとることによる微分 (differentiation by taking logarithms) は関数 f の対数導関数を用いるすることによって関数を微分するために使われる手法である [ ln
数学の分野における、ある位相空間 X の相対コンパクト部分空間(そうたいコンパクトぶぶんくうかん、英: relatively compact subspace)、あるいは相対コンパクト部分集合 Y とは、その閉包がコンパクトであるような部分集合のことである。 コンパクト空間の閉部分集合はコンパクトであるため、コンパクト空間
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented