フレネル積分(フレネルせきぶん、英: Fresnel integrals)とは、オーギュスタン・ジャン・フレネルの名を冠した2つの超越関数 S(x) と C(x) であり、光学で使われている。近接場のフレネル回折現象を説明する際に現れ、以下のような積分で定義される。 S ( x ) = ∫ 0 x sin
ガウス積分
ガウス積分(ガウスせきぶん、英: Gaussian integral)あるいはオイラー=ポアソン積分(オイラーポアソンせきぶん、英: Euler–Poisson integral)はガウス関数 exp(−x2) の実数全体での広義積分: ∫ − ∞ + ∞ e − x 2 d x = π {\displaystyle
ルベーグ積分
数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと x 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、英: Lebesgue integral)は、積分をより多くの関数へ拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値と
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented