与えられた群の部分群全体の成す集合は、包含関係に関して完備束になる。これを部分群の束と言う(この束の下限は通常の集合論的な意味での共通部分だが、上限は集合論的な意味での和集合ではなく、それから生成される部分群である)。G の単位元を e と書けば、単位群 {e} が G の最小の部分群であり、また最大の部分群は
フラッティーニ部分群
non-generating elements) の集合に等しい。ここで G の非生成元とは常に生成集合から取り除くことができる元である。つまり X ∪ {c} が G の生成集合であるときには、X もまた G の生成集合であるような G の元 c を指す。 Φ(G) は G の特性部分群である。とくに、それは
数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、英: normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性を最初に明らかにしたのはエヴァリスト・ガロアである。 群 G の部分群 N
には入らない。 極大右商環 (maximal right ring of quotients) は R の稠密右イデアルと関連して2つの方法で記述することができる。 1つの方法は、Ẽ(R) はある自己準同型環と同型な加群であることが証明され、その環構造からこの同型によって Ẽ(R) に環構造、極大右商環の構造が入る
部分群の指数
G における剰余類の個数として定義される。(H の G における左剰余類の個数はつねに右剰余類の個数と等しい。)例えば、Z を整数のなす加法群とし、2Z を偶数全体からなる Z の部分群とする。すると 2Z は Z において2つの剰余類(すなわち偶数全体と奇数全体)をもち、したがって 2Z の Z における指数は
manjuhuwanqing commented
Lee commented
Lee commented
Lee commented
yuhui liao commented
Lee commented
Lee commented
Lee commented
Lee commented
Lee commented