受賞が決まったのは、ドイツのマックス・プランク感染生物学研究所のエマニュエル・シャルパンティエ氏と、アメリカ、カリフォルニア大学バークレー校のジェニファー・ダウドナ氏の2人です。
2人はそれまであった方法よりも効率的で正確に遺伝情報を書き換えることができる「CRISPR-Cas9」(クリスパー・キャスナイン)と呼ばれる、新たな「ゲノム編集」の手法を開発しました。
受賞対象の手法 日本人研究者の発見がもとに
ノーベル化学賞の受賞対象になったゲノム編集の手法、「CRISPR-Cas9」は、日本人研究者が1980年代に大腸菌で見つけたDNAの塩基配列がもとになっています。
大阪大学名誉教授の中田篤男さん(90)と九州大学教授の石野良純さん(63)のグループは、大阪大学で研究を行っていた時、大腸菌のDNAで同じ配列が5回繰り返されているのを見つけ、1987年に論文として発表しました。
当時は繰り返し現れる配列が何を意味するのか分かっていませんでしたが、その後、この論文をもとにヨーロッパの研究者が、この配列が外から侵入するウイルスなどの「外敵」を認識して攻撃する免疫の仕組みに関わっていることを突き止めました。
大腸菌では、繰り返される配列の間に外敵の遺伝子が組み込まれることで、外敵を認識して攻撃します。
この仕組みを応用して、繰り返される配列の間に目的とする遺伝子を組み込むと、遺伝子を切り貼りするはさみの役割をしている物質を狙った場所に届けることができるようになりました。
この技術で狙ったとおりに遺伝子を切断したり挿入したりすることができるようになり、簡便で精度がきわめて高いゲノム編集の方法として確立しています。
遺伝情報を簡単に、自在に書き換えられる「CRISPR-Cas9」は、日本の研究者による塩基配列の発見がもとになって開発につながったのです。
今回のノーベル化学賞の受賞者に選ばれたドイツの研究機関とアメリカの大学の研究者の論文の中でも、中田さんと石野さんのグループの論文が引用論文として紹介されています。
新型コロナウイルスの研究でも
この技術は、新型コロナウイルスの研究にすでに用いられています。
中国では、マウスに感染するウイルスの遺伝情報を「CRISPR-Cas9」で書き換えて、感染の仕組みや、体への影響を調べる研究が行われています。
また、アメリカのマサチューセッツ工科大学などの研究グループは、この技術を応用してウイルスの遺伝子を簡単に検出する検査キットを開発し、キットはことし5月、FDA=アメリカ食品医薬品局の緊急の許可を得て、研究用として使われています。
このキットは、唾液や鼻の奥から採取した体液を温めたあと、特殊な試験紙を浸すことでウイルスの遺伝子があるかどうかを20分程度で判定できるとされていて、PCR検査に比べて費用も抑えられることから、大量に検査を行うことができるとしています。
このほか複数の企業が、この技術を応用した検査方法の実用化を目指しています。
今回、ノーベル化学賞の受賞が決まったカリフォルニア大学バークレー校の、ジェニファー・ダウドナ氏は先月、アメリカメディアのインタビューに対し、この技術を用いた検査や薬の開発は新型コロナウイルスだけでなく、ほかのウイルスなどで世界的な大流行が起きた際にも重要な役割を果たすと述べています。
医療面でも応用期待
「CRISPR-Cas9」の手法を使ったゲノム編集は、患者の治療など医療面でも応用が期待されています。
治療が難しいがんや遺伝性の病気などについて、病気の原因となる遺伝子を操作することで、治療できるのではないかと期待されていて、アメリカではことし2月、がん患者から取り出した免疫細胞にゲノム編集を行い、免疫の働きを抑える遺伝子を取り除いて、がんの治療効果を確かめる臨床試験が行われたと発表されました。
一方で、ヒトの遺伝子をゲノム編集で自在に書き変えてしまうことには、たとえば、目の色や高い知能など、親が望む特徴を持つよう改変する「デザイナーベビー」を生み出すことにもつながりかねないなど、倫理的な問題が指摘されています。
おととしには中国の研究者が「CRISPR-Cas9」の手法でエイズウイルスに感染しないよう受精卵の遺伝子を操作して実際に女の子の双子が誕生したことを発表し、世界中に衝撃が走りました。
現在のところ、ゲノム編集では、狙った場所以外の遺伝子を改変してしまう可能性が排除できないほか、遺伝子を操作して悪影響が出た場合、子の代、孫の代と、世代を超えて引き継がれる可能性もあり、この技術をどう生かしていくのか、遺伝子の改変はどこまで認められるか、国際的な議論が続けられています。
農水産物の品種改良にも
「CRISPR-Cas9」によるゲノム編集は、世界各国で農水産物の品種改良に使われるようになっています。
これまで農水産物を品種改良して病虫害に強くしたり、味をよくしたりするためには突然変異で現れるのを待つか、品質のよいものを掛け合わせ、繁殖させるなどする必要があり、長い時間がかかっていました。
これに対して、「CRISPR-Cas9」の手法によるゲノム編集では狙った遺伝子を非常に高い精度で操作することができるため、これまでにないスピードで行うことができます。
アメリカでは、ゲノム編集を行って、コレステロールの値を下げる成分を多く含む大豆から搾り取られた食用油が販売されています。
日本国内でも収穫量が多くなるよう品種改良したイネ、それに身の量が多いタイなどが開発されていて、去年10月からはゲノム編集を行った食品の流通が解禁されました。
血圧を下げるとされる成分を多く含んだトマトを開発した企業などが販売のための手続きを進めていて近い将来、こうした食品の流通が始まると見られています。
研究者の間で激しい特許争い
「CRISPR-Cas9」の技術は、農業や医療などさまざまな分野で応用され、利用する企業からの特許料も巨額になると見込まれることから、開発に関わった研究者の間で激しい特許争いが繰り広げられています。
特許争いは、技術の基本的な仕組みを開発したアメリカ・カリフォルニア大学などのジェニファー・ダウドナ教授らと、動物やヒトの細胞に応用できることを最初に証明したアメリカ・マサチューセッツ州にあるブロード研究所のフェン・チャン博士らの間で裁判になってきました。
「CRISPR-Cas9」を動植物の細胞に応用することの特許をめぐって、おととし9月、アメリカの連邦控訴裁判所は、ブロード研究所側に特許があるという判断を示していますが、去年になってアメリカでカリフォルニア大学側がブロード研究所側の特許の取り消しを求める裁判を新たに起こし、特許争いはまだ決着が付いていません。